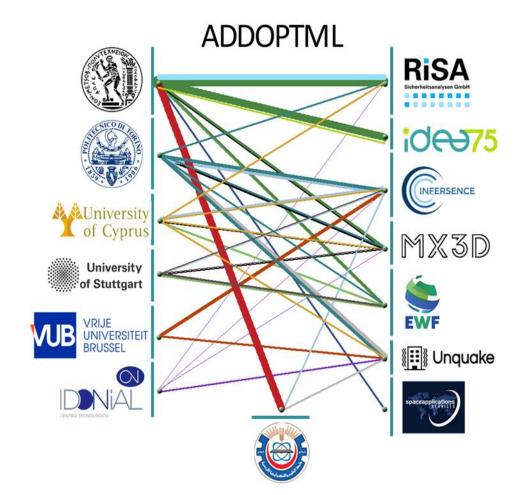


ADDOPTML Midterm Meeting -Welcome


NIKOS D. LAGAROS

- 1. 10:00 to 10:45 Welcome
- 2. 10:45 to 11:45 General status of the project and the WP implementation
- 3. 12:15 to 13:15 Training, Transfer of Knowledge & Networking
- 4. 14:00 to 14:30 Management and Impact
- 5. 14:30 to 15:30 Meeting between seconded staff members and the REA Representative
- 6. 16:00 to 17:00 Open discussion & Questions

The Consortium Round the table Introduction

- ✓ 1 Kickoff meeting done
- ✓ 6 Progress meetings done
- ✓ 90+ months of secondments have been performed
- ✓ D9.1, Website, M2 done
- ✓ D9.2, Data management plan, M6
- ✓ D9.3, Progress report, M13
- ✓ D8.1 Publications to conferences, M17
- ✓ D9.4, Mid-term meeting, M18

- submitted.
- submitted. Pending review.
- to be submitted on M17 or M18.
- in progress M18: October 2022

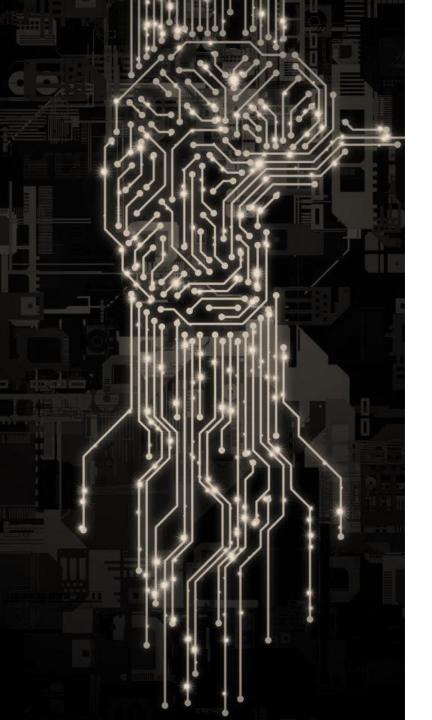
starting date duration

: 01.05.2021 : 48 months

Problems observed

Open discussion

General status of the project and the WP implementation


- □ WP1: Development of topology-sizing design optimization methodology incorporating nonlinear FEM analyses and machine learning (S. Triantafillou-NTUA)
- □ WP2: Determination of material constitutive relations for 3D printed metal and concrete specimens, using also recycled consumables, by means of tests and machine learning (N. Kallioras-INFERSENCE)
- □ WP3: Development of the ADDOPTML optimization and machine learning aided additive manufacturing framework, application to characteristic case studies and experimental verification (**O. Kontovourkis-UCY**)
- □ WP5: 3D printed optimized metal deployable structures to address humanitarian crisis (Ch. Gantes-NTUA)
- WP8: Diploma theses, seminars and an international conference on 3D printed optimized structures -Communication, dissemination and exploitation activities (E. Frangedaki-NTUA)

Social Media

Do not forget

- ADDOPTML Project H2020 MSCA-Rise 2020
 Addoptml
 ADDitively Manufactured OPTimized Structures by means of Machine Learning-ADDOPTML
- Web page: <u>http://addoptml.ntua.gr</u>
- Email: <u>addoptml@mail.ntua.gr</u>

ADDOPTML Midterm Meeting -Welcome

NIKOS D. LAGAROS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007595.

ADDOPTML Work Package 1

Development of a **topology-sizing** design optimization methodology incorporating **nonlinear FEM** analyses and **machine learning**

WP Leader NTUA

Logistics and parties involved

Partner	Country	PMs	
National Technical University of Athens	Greece	24	
Politecnico di Torino	Italy	5	
University of Cyprus	Cyprus	1	
IDEA75	Italy	5	
EWF	Portugal	2	
IDONIAL	Spain	2	
INFERSENSE	Greece	12	
Jordan University of Technology	Jordan	12	
Vrije University Brussels	Belgium	1	
RISA	Germany	8	
MX3D	The Netherlands	2	
Structures & Sensors	Greece	6	

Start Month: 1 End Month: 24

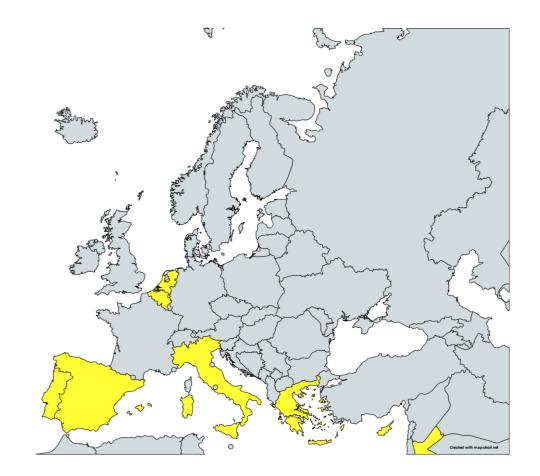
ADDOPTML – Mid Period Review Meeting 12/7/2022

Logistics and parties involved

Partner	Country	PMs
National Technical University of Athens	Greece	24
Politecnico di Torino	Italy	5
University of Cyprus	Cyprus	1
IDEA75	Italy	5
EWF	Portugal	2
IDONIAL	Spain	2
INFERSENSE	Greece	12
Jordan University of Technology	Jordan	12
Vrije University Brussels	Belgium	1
RISA	Germany	8
MX3D	The Netherlands	2
Structures & Sensors	Greece	6

Start Month: 1 End Month: 24

ADDOPTML – Mid Period Review Meeting 12/7/2022



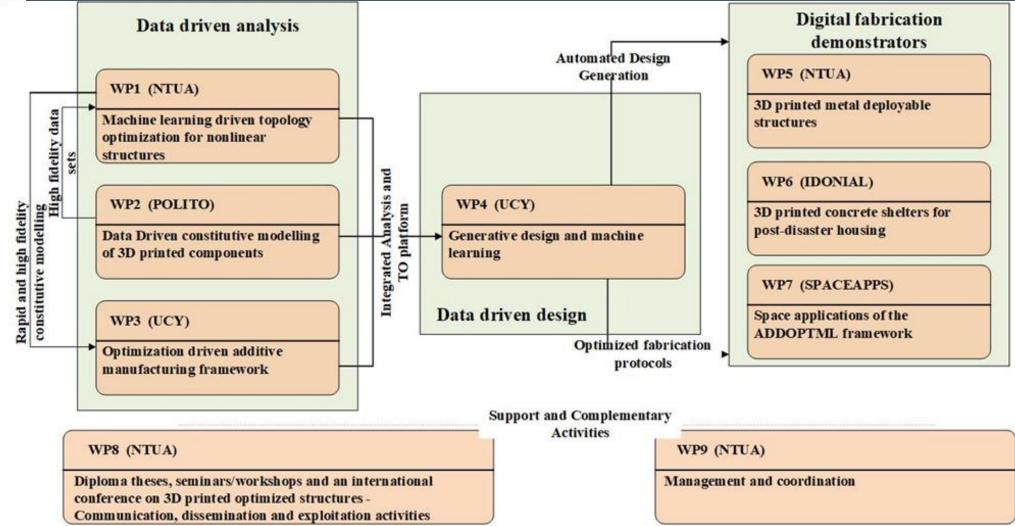
Logistics and parties involved

Partner	Country	PMs	
National Technical University of Athens	Greece	24	
Politecnico di Torino	Italy	5	
University of Cyprus	Cyprus	1	
IDEA75	Italy	5	
EWF	Portugal	2	
IDONIAL	Spain	2	
INFERSENSE	Greece	12	
Jordan University of Technology	Jordan	12	
Vrije University Brussels	Belgium	1	
RISA	Germany	8	
MX3D	The Netherlands	2	
Structures & Sensors	Greece	6	

Start Month: 1 End Month: 24

To deliver a completely novel **three stage** topology-sizing design optimization methodology in which

- □ Linear Buckling and Geometrical and Material Nonlinear Analyses will be informing the optimization process
- **Considering:** Multiple loading cases in each search iteration.
- **Employing:** Machine Learning surrogates to accelerate the overall optimization process



Where do we fit?

- □ Task 1.1 Nonlinear three-stage topology-sizing design optimization methodology (Lead NTUA):
- Objective: Through a three-iteration optimisation strategy, the roughly optimized shape of the first stage will be further optimized so that all verifications against all pertinent failure mechanisms will be included in the analysis.
 - □ **First Stage:** TO approaches to be improved in terms of computational efficiency (link to Task 1.2); multiple loading combinations (the design loading conditions). This will lead to roughly optimized shapes of the structural elements (members, nodes) or structures (**development by NTUA, POLITO and IDEA75**).
 - □ Second Stage (aka the interpretation stage): the optimized shapes resulted from the first stage will be interpreted into CAD designs (development by NTUA, POLITO, IDEA75 and RISA, interpretation guidelines will be written by UCY).

□ Third Stage: Fuse with Linear Buckling and Geometrical, Material Nonlinearities

□ (development by NTUA, problem constraints regarding the structural part provided by UCY, IDEA75, RISA and JUST; constraints for the 3D printing part provided by EWF, MX3D BV and IDONIAL)

□ Task 1.2 Machine learning assisted TO (Lead NTUA):

□ Objective : To accelerate the TO procedure employing ML machine learning driven surrogates.

□ To develop a methodology via combining a topology optimization approach (BESO, ESO, level set or SIMP) and a deep learning (DL) method (e.g. deep belief networks-DBN) – **development by NTUA INFERSENCE and STRUCTURES & SENSORS**)

□ Task 1.3 Design of members, connections and structures with non-linear FEM analyses (Lead NTUA):

- □ Objective: Design procedures for structures using nonlinear analysis
- □ Metal members, connections and structures (development by NTUA input by MX3D)
- □ Fibre reinforced concrete members (development by NTUA, JUST and STRUCTURES & SENSORS and IDONIAL).

Progress to date

Nonlinear Topology Optimisation

Extending TOCP capabilities to perform nonlinear topology optimisation Machine Learning Assisted Topology Optimisation

Deep belief surrogates for fast forward predictions

Training given experimental and artificial data-sets Member and structural design

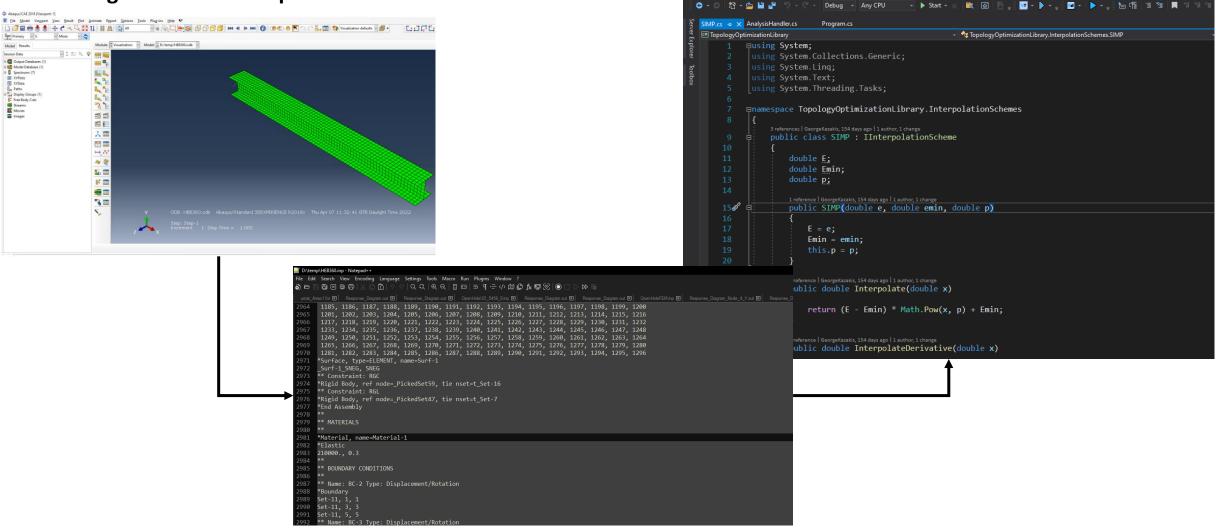
Additively manufactured concrete member damage modelling

WAAM steel damage modelling

Process specifications for manufacturing constraints

Interface with commercial solvers (Abaqus, Adina)

Interface with open-source solvers (FreeFEM)



A CONTRACT OF A

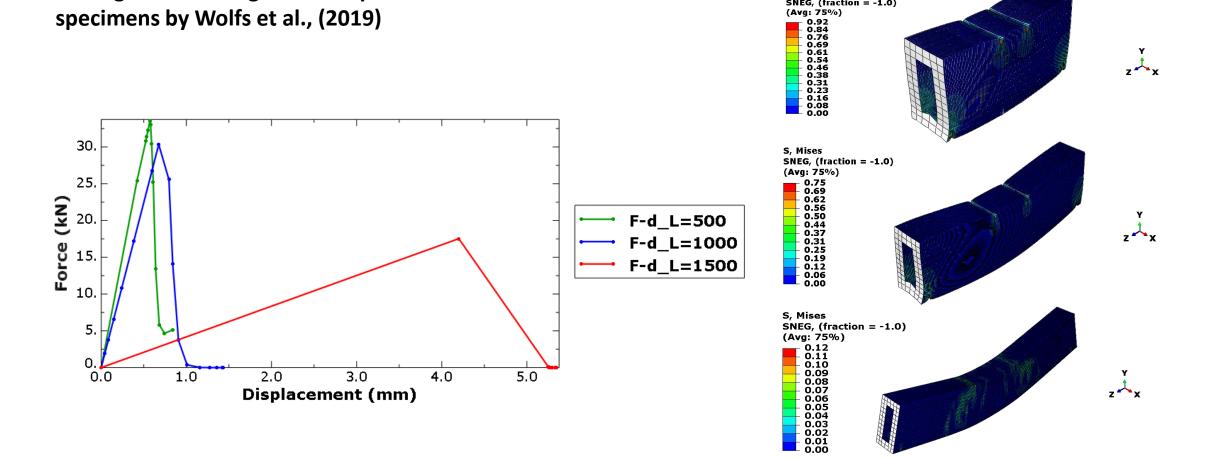
TopologyOptimi

م

Interfacing TOCP with Abaqus

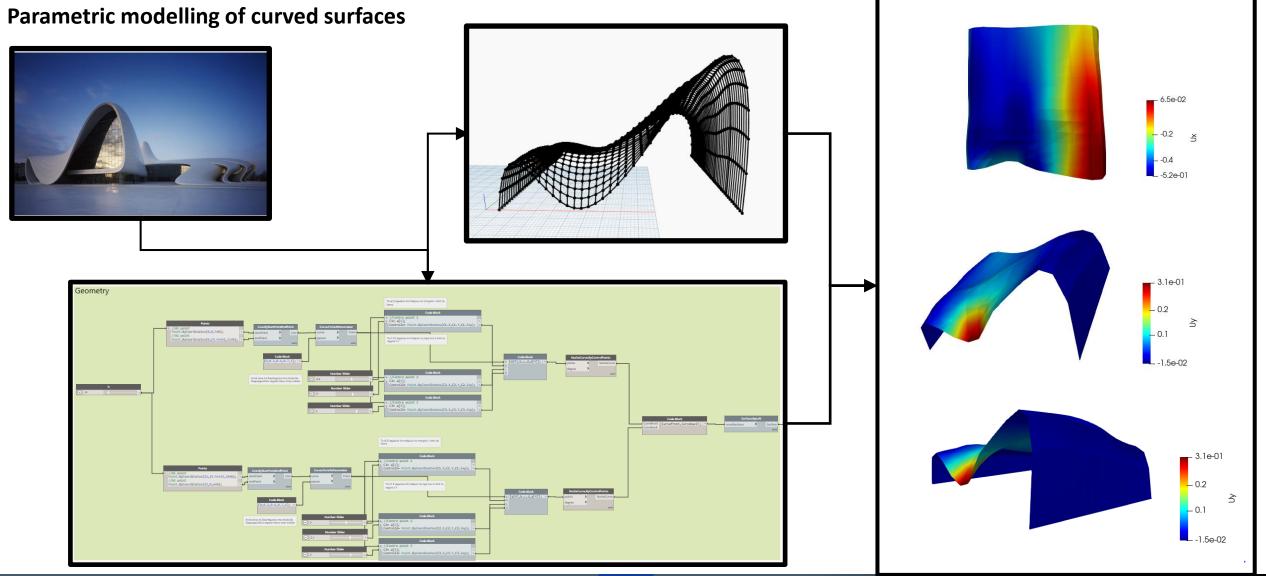
Toggle pin status

View Git Project Build Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q)

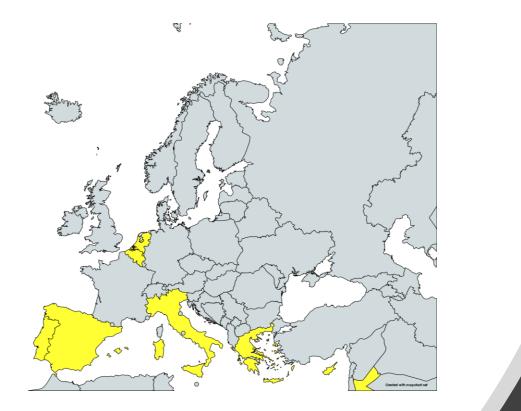


Progress to date

modelling Damage - experiments on concrete specimens by Wolfs et al., (2019)

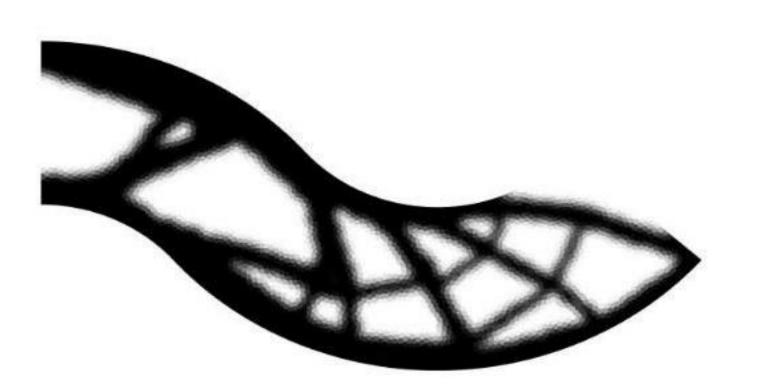

S, Mises

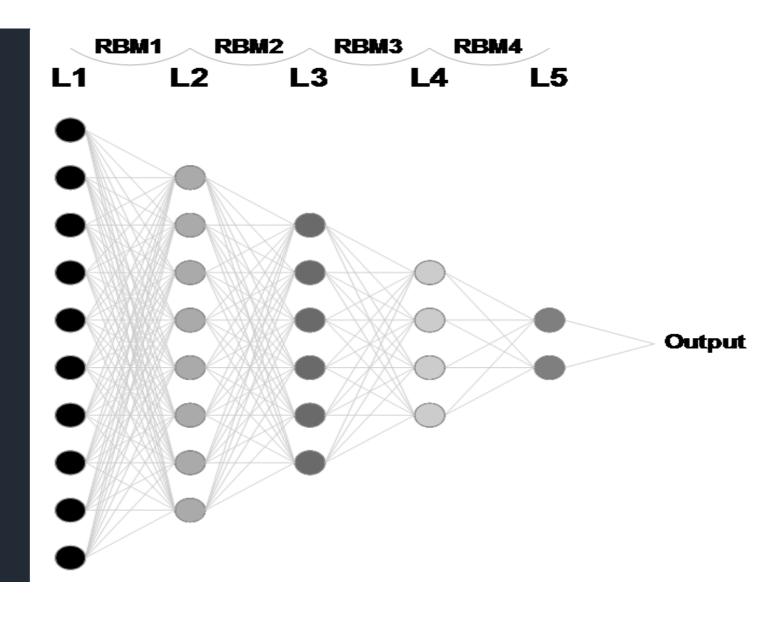
SNEG, (fraction = -1.0)


Deliverable D1.1 A software prototype to be released **Status:** on schedule

Delivery date: M20

Deliverable D1.2 Journal publications (dissemination requirement: at least 1) **Status:** 1 already published more are on the way

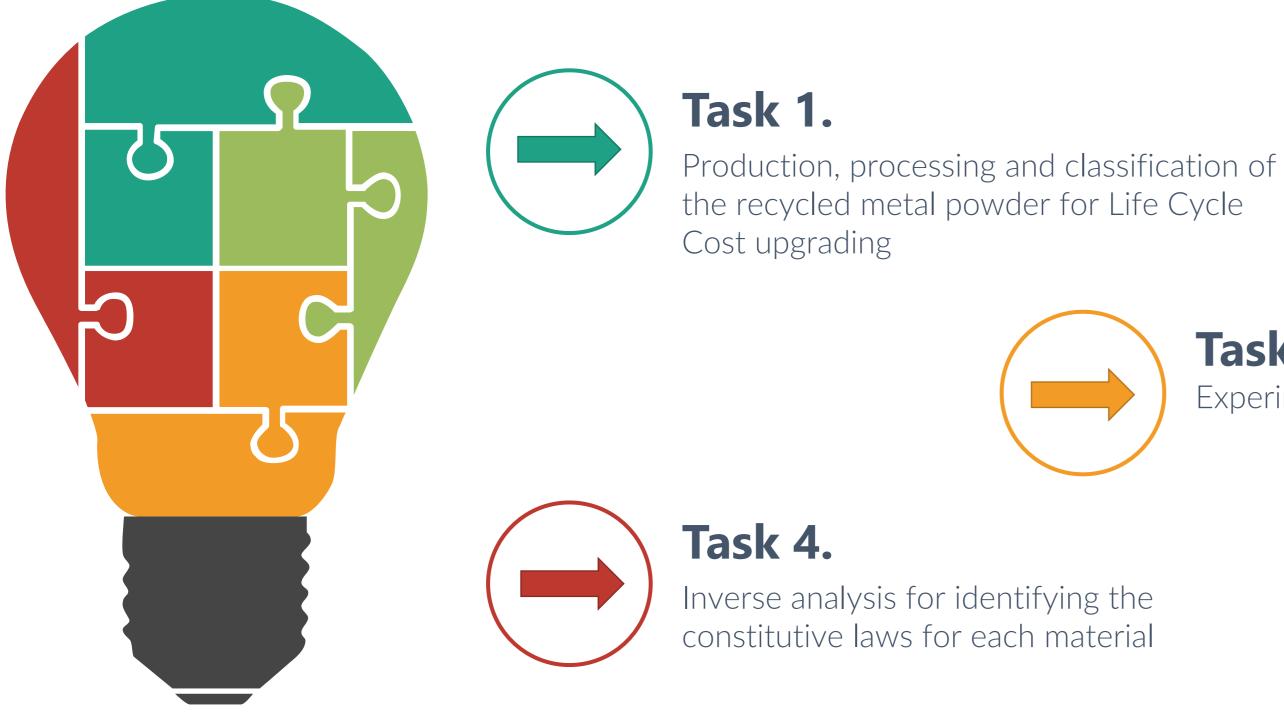

Delivery date: M24

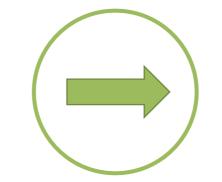

Thanks for your attention

ADDitively Manufactured OPTimized Structures by means of Machine Learning

ADDOPTML **Midterm Meeting WP2** Presentation 12/07/2022

Goal – Participants – Person months




GOAL: Define material constitutive relations for both conventional and recycled consumables via AI

Duration: 36 months

WP2 Presentation Short Description of the WP

Task 2.

3D printing of specific concrete and metal specimens

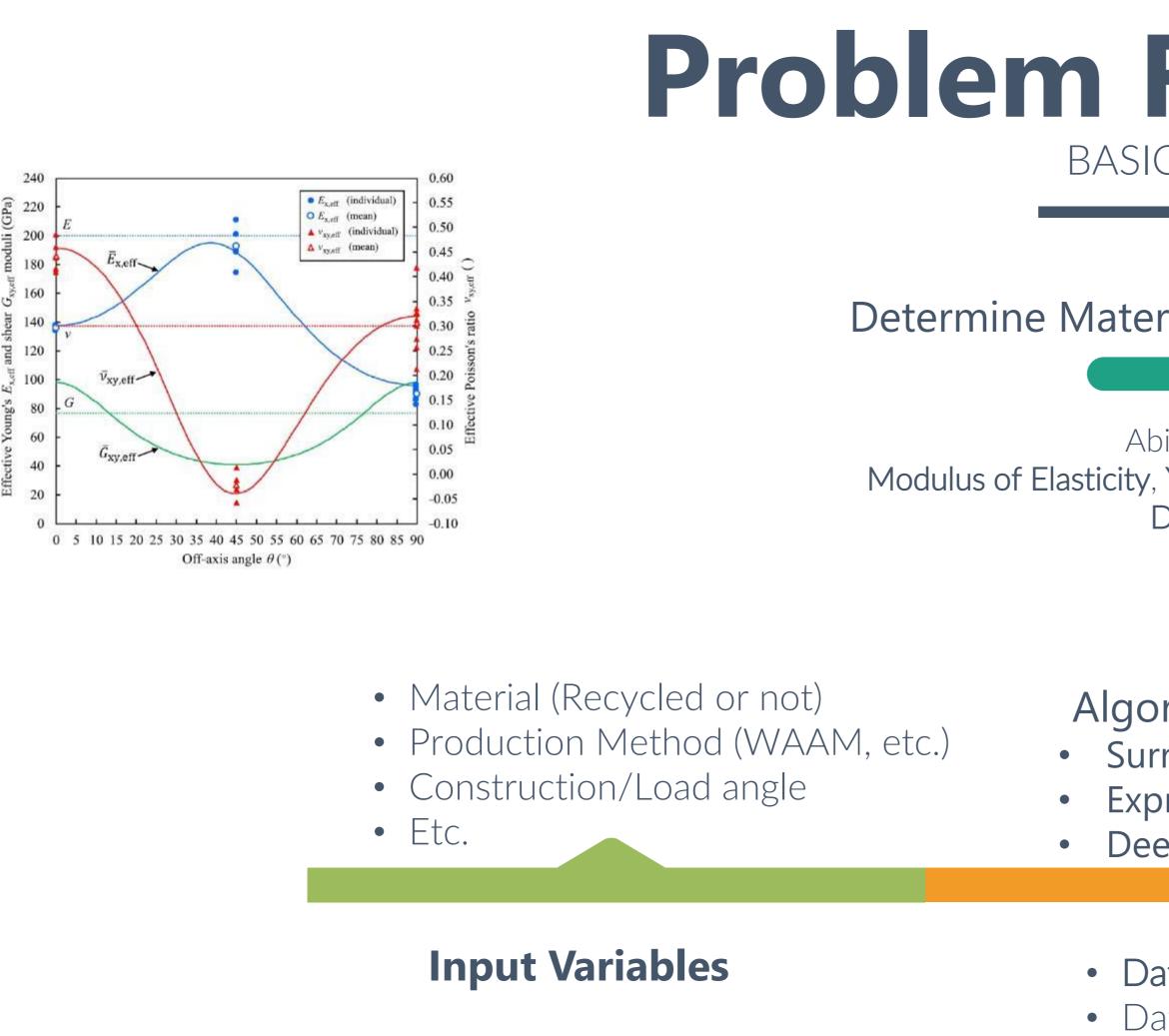
Task 3.

Experimental testing of concrete and metal specimens

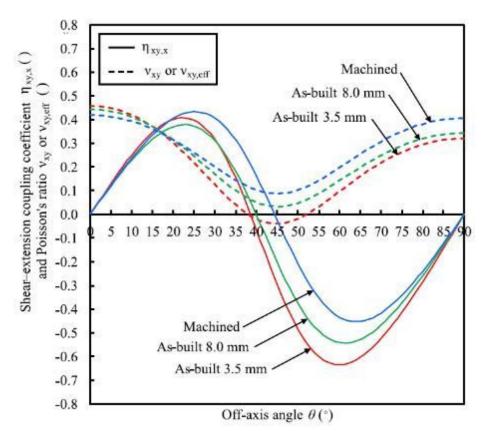
Task 5.

Machine learning based metal and concrete constitutive laws

WP2 Partners and Secondments


POLITO	NTUA	UCY	IDONIAL	EWF	MX3D	STRUCTURES & SENSORS	RISA	JUST	VUB	INFE
5	6	1	2	2	2	6	8	12	3	

11 Partners – 59 Person Months



Nicolas Hadjipantelis, Ben Weber, Craig Buchanan, Leroy Gardner, Description of anisotropic material response of wire and arc additively manufactured thin-walled stainless steel elements, Thin-Walled Structures, Volume 171, 2022

Problem Formulation BASIC FEATURES

Determine Material Constitutive Relations

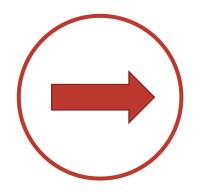
Ability to predict Modulus of Elasticity, Yield strength, Ultimate strength, Ductility, etc.

A.I. Algorithms/Scale Surrogate Models **Expression Fitting** Deep Learning

• Data volume Data Augmentation • Single/Multiple Fidelity • Bayes/Gauss methods

Predicted Results

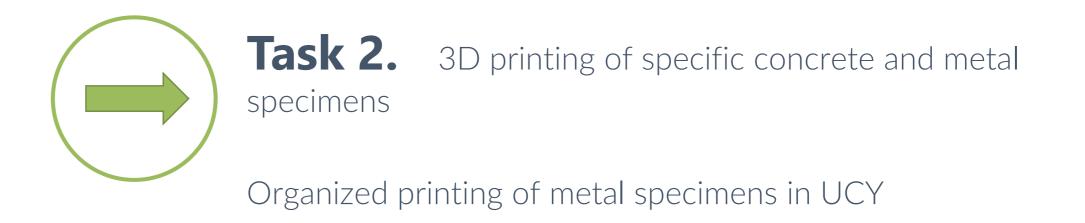
Current Progress Status BASIC FEATURES



Task 1. Production, processing and classification of the recycled metal powder

Undergoing examination of possible differences between recycled/non-recycled metal powder.

Up to now, no significant differences have been identified.


Task 4. Inverse analysis for identifying the constitutive laws for each material

Bibliography research – Implementation not started yet

Two progress meetings so far (16/03/2022 and 01/07/2020) while a third one will be programmed for September.

One publication in journal: Al-Rousan, R., Nusier, O., Abdalla, K., Alhassan, M., & Lagaros, N. D. (2022). NLFEA of Sulfate-Damaged Circular CFT Steel Columns Confined with CFRP Composites and Subjected to Axial and Cyclic Lateral Loads. *Buildings*, 12(3), 296. (3D Scanning/Printing: A Technological Stride in Sculpture))

Task 3. Experimental testing of concrete and metal specimens

Database creation from Bibliography research – Implementation of testing not started yet

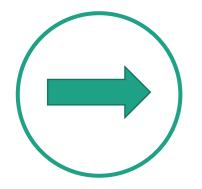
Task 5. Deep learning based metal and concrete constitutive laws

Bibliography research – Implementation not started yet

WP2 Secondments so far:

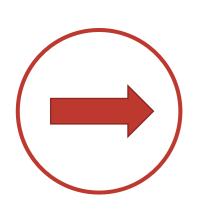
- 01/09/2021 to 31/12/2021, and 15/02/2022 until mid of July in WP2
- 01/09/2021 to 31/01/2022, in WP2 15/02/2022 to 14/06/2022 in WP2.
- 14/05/2022 in WP2
- Dr. Stavros Chatzieleftheriou, from S&S to UCY, 13/12/2021 to 12/12/2022, WP 1, 2, 3
- Konstantinos Trikardos, from S&S to UCY, 13/12/2021 to 12/06/2022 WP 1, 2, 3
- Pantelis Tsakalis, from Infersence to UCY, 21/03/2022 to 20/09/2022 WP 2, 4
- Ilias Chamatidis from Infersence to UCY, 21/03/2022 to 20/09/2022 WP 2, 4
- Spyros Damikoukas from NTUA to RISA, 17/02/2022 to 31/07/2022 WP 2, 3
- Paraskevi Mode from NTUA to RISA, 10/05/2022 to 24/10/2022 WP 2, 3

• Dr. Rajai Al Rousan, from Jordan University of Science and Technology -JUST, to National Technical University Of Athens - NTUA,


• Dr. Osama Nusier, from Jordan University of Science and Technology -JUST, to National Technical University Of Athens – NTUA,

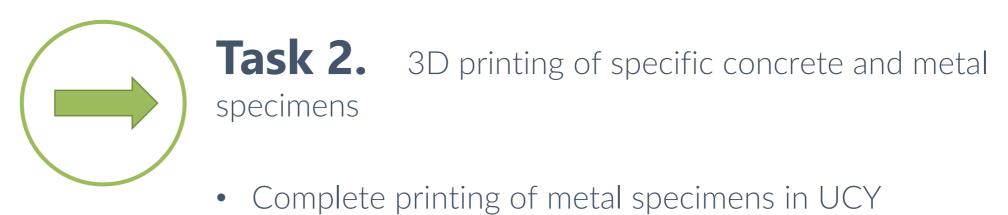
• Dr. Ahmad Alawneh, Jordan University of Science and Technology -JUST, to National Technical University Of Athens – NTUA, 15/02/2022 to





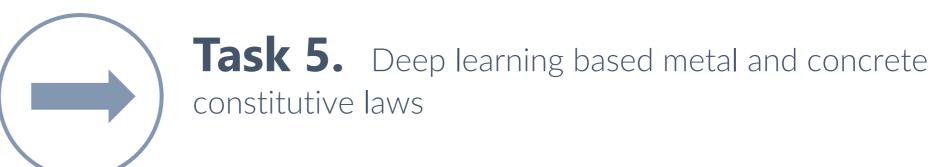
Task 1. Production, processing and classification of the recycled metal powder

Classification of produced metal powder


Task 4. Inverse analysis for identifying the constitutive laws for each material

• Implement inverse analysis

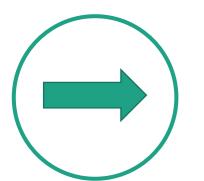
Deliverables:


- 1. Conference presentation in 24th month
- 2. Article in 36th month

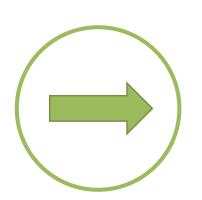
- Organize and print other metal specimens
- Organize and print concrete specimens

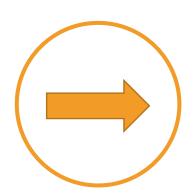
Task 3. Experimental testing of concrete and metal specimens

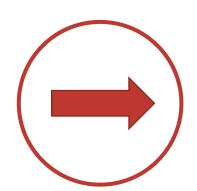
Perform tests once specimens are readyCombine results with database from bibliography



• Strict problem definition – Formulate AI pipeline– Run AI algorithms



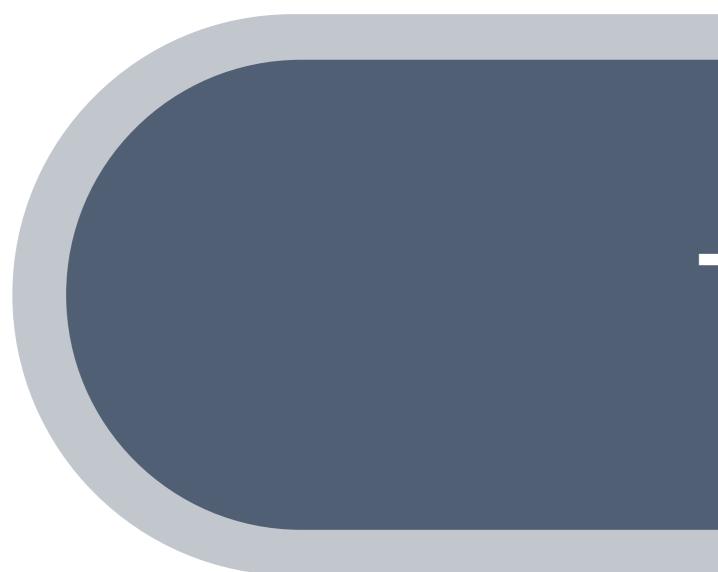



3D Printed Seismic Isolation Members Specimens

Performance Evaluation through Testing.

Optimize Topology and License Testing

Patentable Production



Deliverables:

- 1. Conference presentation in 24th month
- 2. Article in 36th month

Thank You

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

WP3

Development of the ADDOPTML Optimization and Machine Learning Aided Additive Manufacturing Framework

Application to characteristic Case Studies and Experimental Verification

Midterm meeting

101007595- ADDOPTML

Athens, 12 July 2022

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

Start / End Month: 13 (01.05.2022) – 48 (30.04.2025)

Lead Beneficiary: UCY

Participating organisation Short	NTUA	POLITO	UCY	USTUTT	EWF	MX3D	STRUCTURE S & SENSORS
Name	IDONIAL	IDEA75	VUB	INFERS ENCE	JUST	BV	
Total Person Months per	30	6	3	1	2	2	14
Participating organisation:	2	5	2	6	17		14

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

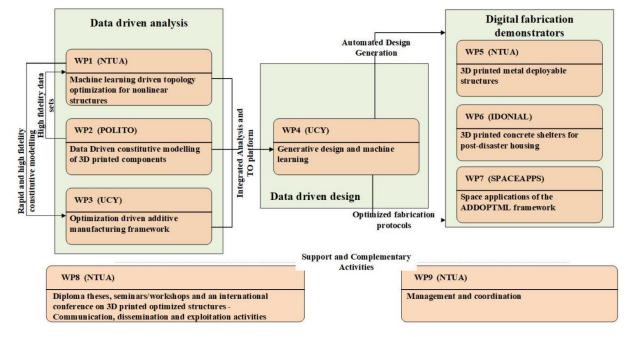


Fig. Global view of ADDOPTML WPs

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

OBJECTIVES

- The ADDOPTML optimization and machine learning aided additive manufacturing framework will be developed, aiming to work as a prototype generator.
- This framework aims to function as a combination of guided but intuitive at the same time prototyping applications from the starting point of drafting a design to the final part of 3D printing construction.
- This framework requires the collaboration of architects, structural engineers, 3D printing and optimization specialists in a knowledge transfer manner.

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

DEVELOPMENT

- TASK 3.1: ADDOPTML optimization and machine learning aided additive manufacturing framework (Lead by NTUA)

(i) Problem formulation, (ii) Problem solving, (iii) 3D Printing of optimized forms

APPLICATION

- TASK 3.2: Case studies (Lead by UCY)
- TASK 3.3: Methodologies of interdisciplinary and parametric design (Formulation) (Lead by NTUA)
- TASK 3.4: Performance-based interdisciplinary and parametric design-based engineering optimization (Solution) (Lead by UCY)
- TASK 3.5: Additive manufacturing (3D printing) (Lead by MX3D BV)
- TASK 3.6: New 3D printing approaches (Lead by IDONIAL)

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

VERIFICATION

- **TASK 3.7:** Verification of numerically designed 3D-printed structural elements, connections and structures with experimental tests (Lead by NTUA)
- TASK 3.8: Vibration measurements and interpretation for experimental testing (Lead by STRUCTURES & SENSORS)

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

CONTRIBUTION

- The academic contributors will be involved in the design optimization problem formulation and application of the ADDOPTML framework.
- AM experts will be involved in the manufacturing process.
- STRUCTURES & SENSORS together with the academic contributors will contribute to the monitoring and verification process of specimens, all in line with research work plan.

DELIVERABLES

- **D3.1 Publications to conferences**: two presentations in international conference on interdisciplinary design methodologies (Delivery M36), one presentation on parametric design and one on the 3D printed specimens (Delivery M48)
- **D3.2 Publications to scientific journals**: one journal publication on the interdisciplinary design and parametric design optimization methodologies and one on additive manufacturing will be published (both providing open access) (Delivery M48)

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

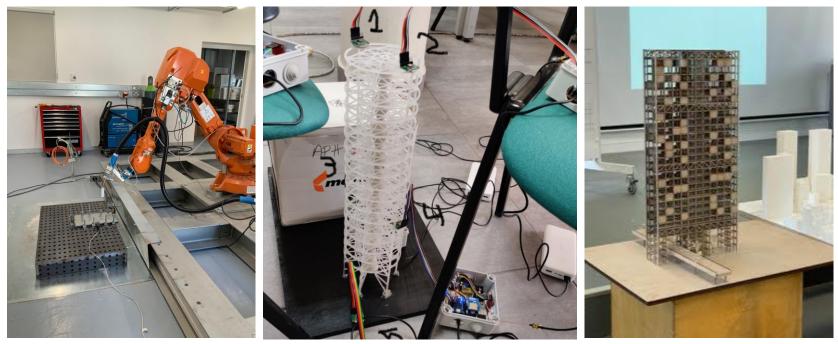
WP3 ACTIVITIES SO FAR

- Kick-off Online Meeting, December 14, 2021 03:00 PM (GMT+3), Nicosia
- WP3 Online Presentation on AM, January 18, 2022 04:00 PM (GMT+3), Nicosia

WP3 ONLINE PRESENTATION

WAAM – Wire-Arc Additive Manufacturing - Thomas Van Glaabeke

3D Concrete Printing - Pablo Cabal Pérez with David Santos



REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

WP3 CURRENT AND FUTURE COLABORATIONS

- Contribution of WAAM laboratory and collaboration with ADDOPTML partners for the 3D printing of steel specimens and experimental verification.
- Collaboration with ADDOPTML partners for the modal analysis tests of plastic and steel specimens.
- Collaboration with ADDOPTML partners for measuring dynamic characteristics of slender tall skyscrapers mock ups.

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

WP3 PARTNERS

Partner	Name	E-mail
UCY	Marios C. Phocas Odysseas Kontovourkis Nicolas Hadjipantelis	<u>mcphocas@ucy.ac.cy</u> <u>kontovourkis.odysseas@ucy.ac.cy</u> <u>hadjipantelis.nicolas@ucy.ac.cy</u>
NTUA	Eleftheria Tsalamegka	etsal185@gmail.com
JUST	Khairedin Abdalla Rajai Alrousan	abdallakhairedin@yahoo.com rzalrousan@just.edu.jo
IDONIAL	Pablo Cabal Pérez David Santos	pablo.cabal@idonial.com david.santos@idonial.com
VUB	Tine Tysmans	Tine.Tysmans@vub.be
MX3D BV	Thomas Van Glabeke	thomas@mx3d.com
USTUTT	Maria Matheou	maria.matheou@ilek.uni-stuttgart.de
IDEA75	Vincenzo Zeffiri	v.zeffiri@idea75.it
EWF	Beatriz Lopez	amlopez@ewf.be
STRUCTURES & SENSORS	Stavros Chatzieleftheriou	s.chatzieleftheriou@unquake.co
INFERSENCE	Nikos Kallioras	kallioras.nikos@gmail.com

EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

WP5: 3D printed optimized metal deployable structures to address humanitarian crisis

Midterm meeting

12 July 2022

Start Month	13 (1/5/2022)
End month	48 (30/4/2025)

Lead Beneficiary: NTUA

Person months per participating organization

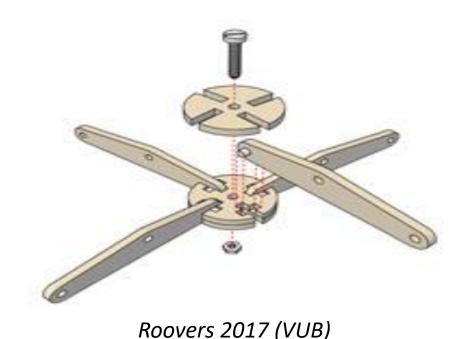
NTUA	RISA	JUST	VUB	USTUTT	STRUCTURES & SENSORS	POLITO	INFERSENCE	MX3D BV	UCY	EWF
24	10	10	8	8	6	6	4	3	2	1

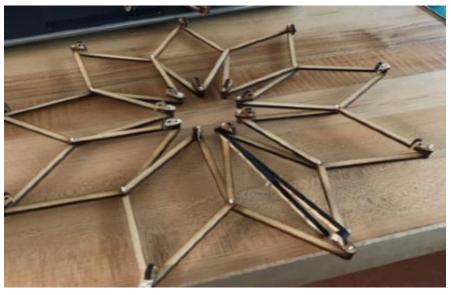


Objectives

- This WP aims to design deployable structures that will exploit AM techniques for the fabrication of their members and connections, thus achieving short fabrication times, to respond quickly to urgent sheltering needs in times of humanitarian crises, such as the current corona-virus pandemic.
- The design of the prototype shelter in this WP will follow the guidelines and specifications for shelter kits of the International Organization for Migration (IOM).
- □ Scissor-based as well as origami-inspired deployable structures will be explored.

2010 Haiti earthquake


Koumar 2016 (VUB)



Why are deployable structures an interesting problem for additive manufacturing?

- They require complex joints allowing large rotations that usually must be simplified due to fabrication difficulties, thus introducing eccentricities and leading to poor structural performance.
- In some deployable structure types members are unconventionally shaped, thus requiring specialized and expensive fabrication methods.

Krishnan 2018

Tasks

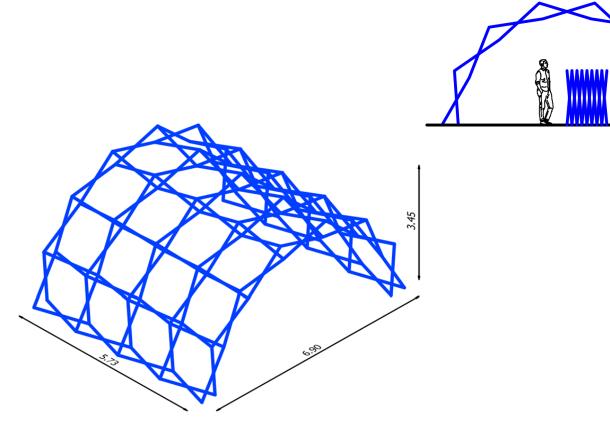
Task 5.1 Optimized design of deployable shelters for disaster relief

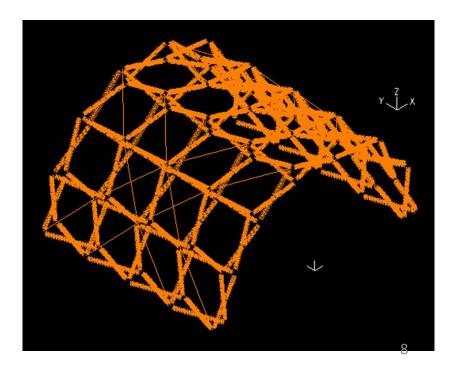
- (i) Identification of suitable geometry and design criteria for deployable shelters for disaster relief
- (ii) Structural design and member optimization.
- (iii) Connection optimization.
- (iv) Detailed design of prototype shelter.
- Task 5.2 Case Study: 3D printing and testing of scaled prototype deployable shelter
- (i) The prototype shelter designed in task 5.1 will be 3D printed in appropriate scale for demonstration as well as testing purposes.
- (ii) The scaled model will be tested in the Laboratory of NTUA's Institute of Steel Structures.
- (iii) The associated numerical model will be calibrated.

Tasks

- **Task 5.3** Typical designs of deployable shelters for disaster relief: A range of typical designs of deployable shelters for various applications related to disaster relief will be prepared
- **Task 5.4** Integration of working joints or movable features on PBF-LB (Powder Bed Fusion Laser Beam) printed components: This task is based on the implementation of moving features within 3D printed components manufactured through PBF-LB technology
- **Task 5.5** Design and development of embedded sensors for safety assessment of deployable space scissor-based and origami structures

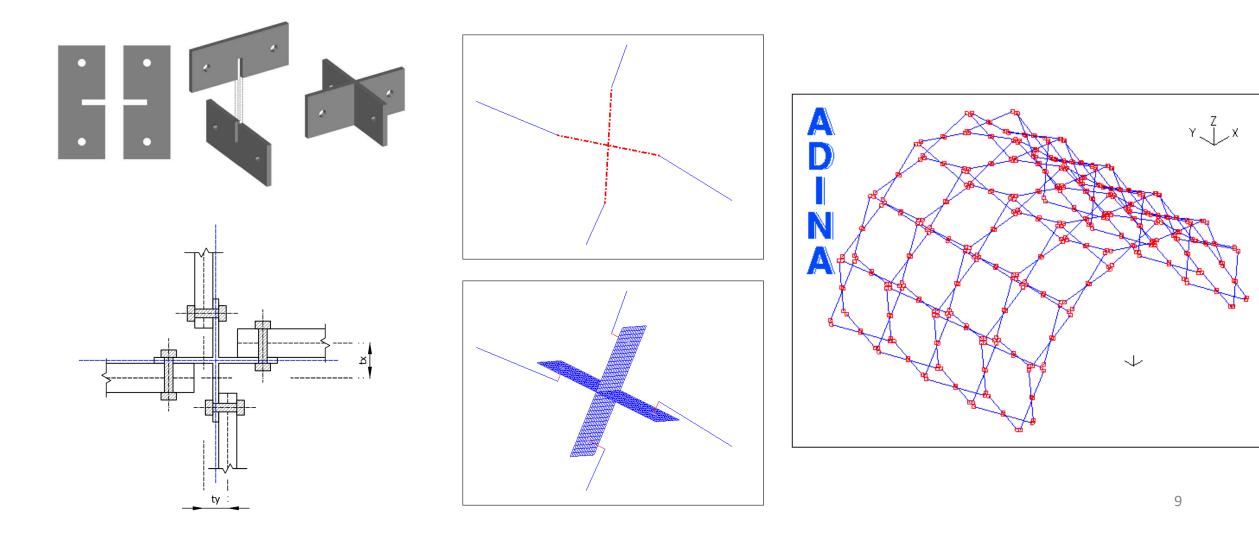
The contribution of beneficiaries and partners


- Scissor-based deployable structures: NTUA VUB
- Origami-based deployable structures: USTUTT VUB
- Optimization: NTUA POLITO VUB RISA
- Automation: UCY USTUTT
- □ 3D printing (WAAM): MX3D EWF UCY
- **3**D printing (PBF-LB): IDONIAL
- □ Structural steel design and testing: NTUA JUST
- Structural health monitoring: STRUCTURES & SENSORS INFERSENCE
- □ Material characterization: STRUCTURES & SENSORS INFERSENCE



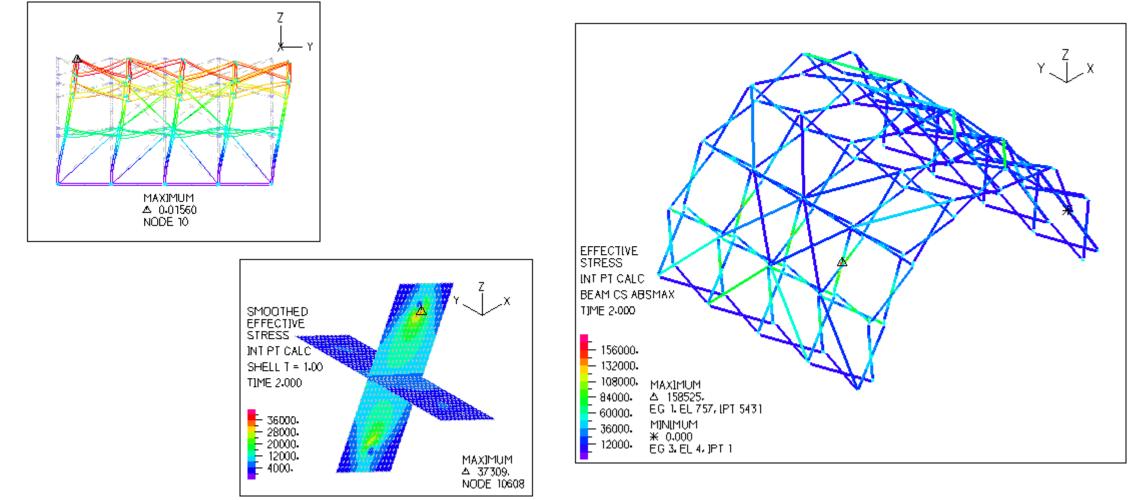
Progress achieved so far (Task 5.1)

□ Numerical modeling, analysis and optimized design of the shelter proposed by Koumar



Progress achieved so far (Task 5.1)

Numerical modeling of joints



Progress achieved so far (Task 5.1)

□ Analysis results of "manually" optimized structure

Next steps

- Mathematical optimization of member cross-sections
- Topology optimization of joints
- 3D printing of optimized joints
- Assembly of scaled model comprising 3D printed joints and conventional members
- Experimental testing
- Other typical designs
- Embedded sensors
- PBF-LB printed components
- Origami type deployable structures

Deliverables as described in the proposal

D5.1 - Report:

Methodology for optimized design of deployable shelters for disaster relief including 3Dprinting-ready member and connection design Delivery M30

D5.2 - Report, drawings and 3D printed prototypes

Typical designs of deployable shelters for various applications related to disaster relief, fabrication and testing of prototype deployable shelter

Delivery M48

Additional deliverables

Scientific publications

Secondments

In planning stage

Partner	Name	E-mail
NTUA	Charis Gantes Evi Frangedaki Maria Kardatou	<u>chgantes@central.ntua.gr</u> <u>efraggedaki@arch.ntua.gr</u> <u>mariakmeg@gmail.com</u>
RISA	Dimitrios Bilionis	dimbilionis@gmail.com
JUST	Khairedin Abdalla	abdallakhairedin@yahoo.com
VUB	Tine Tysmans Niels de Temmerman	<u>Tine.Tysmans@vub.be</u> <u>Niels.De.Temmerman@vub.be</u>
USTUTT	Maria Matheou	maria.matheou@ilek.uni-stuttgart.de
STRUCTURES & SENSORS	Stavros Chatzieleftheriou	s.chatzieleftheriou@unquake.co
POLITO	Giuseppe Marano Jonathan Melchiorre	giuseppe.marano@polito.it
INFERSENCE	Nikos Kallioras Stefanos Sotiropoulos	kallioras.nikos@gmail.com st.sotirop@gmail.com
MX3D BV	Thomas Van Glabeke	thomas@mx3d.com
UCY	Marios Phocas Odysseas Kontovourkis Nicolas Hadjipantelis	<u>mcphocas@ucy.ac.cy</u> <u>kontovourkis.odysseas@ucy.ac.cy</u> <u>hadjipantelis.nicolas@ucy.ac.cy</u>
EWF	Beatriz Lopez	amlopez@ewf.be
IDONIAL	Pablo Cabal David Santos	pablo.cabal@idonial.com david.santos@idonial.com

European Commission EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) REA.A - Marie Sklodowska-Curie Actions & Support to Experts

A.3 - MSCA Staff Exchanges

MIDTERM MEETING

ADDOPTML

Optimized 3D printed structures

Athens, 12th July 2022

National Technical University of Athens

School of Architecture

Evangelia I. Frangedaki

EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) REA.A - Marie Sklodowska-Curie Actions & Support to Experts

A.3 - MSCA Staff Exchanges

ADDitively Manufactured OPTimized Structures by means of Machine Learning Work Package Number: 8

WORK PACKAGE TITLE:

DIPLOMA THESES,

SEMINARS/WORKSHOPS,

AN INTERNATIONAL CONFERENCE ON 3D PRINTED OPTIMIZED

STRUCTURES

COMMUNICATION, DISSEMINATION AND EXPLOITATION ACTIVITIES

START/END MONTH: **1/48**

DELIVERABLES:

D8.1 PUBLICATIONS TO CONFERENCES D8.2 PUBLICATIONS TO SCIENTIFIC JOURNALS D8.3 ADDOPT2024 CONFERENCE D8.4 THESES D8.5 ADDOPTML WORKSHOPS AND SEMINAR D8.6 PUBLIC ANNOUNCEMENTS

REA.A - Marie Sklodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

Work Package Number: 8

Progress as depicted in deliverables

D8.2 PUBLICATIONS TO SCIENTIFIC JOURNALS

2 PUBLICATIONS OF A REVIEW JOURNAL PAPER D8.4 THESES

3 MASTER DIPLOMA THESIS 2 FINALISED DOCTORAL THESIS

D8.5 ADDOPTML WORKSHOPS AND SEMINAR WEBNINAR ON THE 27TH OF MAY 20221, "3D PRINTING IN CONSTRUCTION, PAST, PRESENT, FUTURE"

D8.6 PUBLIC ANNOUNCEMENTS

- The actions of the project are shared in social media as follows
- 1. HTTPS://TWITTER.COM/ADDOPTML
- 2. HTTPS://WWW.FACEBOOK.COM/ADDOPTML/

3. <u>HTTPS://WWW.RESEARCHGATE.NET/PROJECT/ADDITIVELY-MANUFACTURED-OPTIMIZED-STRUCTURES-BY-MEANS-OF-MACHINE-LEARNING-ADDOPTML</u>

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

Work Package Number: 8 Progress

D8.2 PUBLICATIONS TO SCIENTIFIC JOURNALS

- Sargentis, G.-F.; Frangedaki, E.; Chiotinis, M.; Koutsoyiannis, D.; Camarinopoulos, S.; Camarinopoulos, A.; Lagaros, N.D. 3D Scanning/Printing: A Technological Stride in Sculpture. Technologies 2022, 10, 9
- 2.Frangedaki, E., Sardone, L., & Lagaros, N. D. (2021). Design Optimization of Tree-Shaped Structural Systems and Sustainable Architecture Using Bamboo and Earthen Materials. *Journal of Architectural Engineering*, ASCE, 27(4), 04021033.

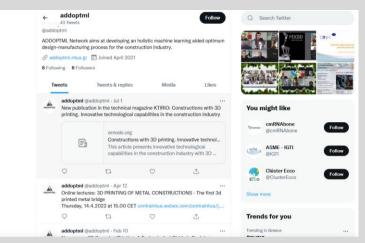
D8.4 THESES

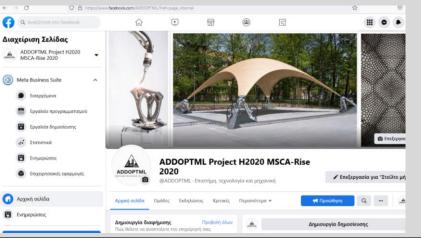
- 1. Tania Livanou: Automated analysis of parameterized surface carriers, November 2021,
- 2. Isidora Simatou: Non-linear analysis of three-dimensional concrete printed members, October 2021,
- 3.Sevastianos Liristis: Optimization of Vierendeel-Type Steel Structure by Means of Nonlinear Numerical Analyses, March 2022

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

Work Package Number: 8

Progress

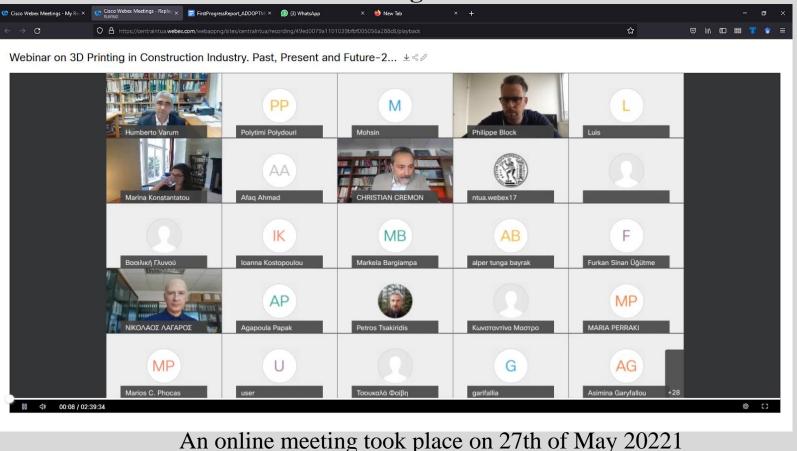

Explore


Settings

- TWITTER HTTPS://TWITTER.COM/ADDOPTML
- <u>HTTPS://WWW.FACEBOOK.COM/ADDOPTML/</u>
- <u>HTTPS://WWW.RESEARCHGATE.NET/PROJECT/ADDITIVELY-</u> <u>MANUFACTURED-OPTIMIZED-STRUCTURES-BY-MEANS-OF-</u>

MACHINE-LEARNING-ADDOPTML

🔓 Home 🌗	Questions Jobs Search for researchers, publications, and more	Q
	Project	Updates
	ADDitively Manufactured OPTimized Structures by means of	Recommendations
	Machine Learning-ADDOPTML	Eollowera
	Nikos Lagaros - Charis Gantes - B Nikos A. Kallioras - Show all 22 collaborators	Reads (0
	Goal: The principal aim of ADDOPTML Horwork is to create and test an holistic machine learning aided optimum designer-manufacturing process of child structures by developing strong upwergies among a multi-disciplinary team of academic experts and SMEs from Belgium, Opprus, German Show details	
	Overview Project log References (5)	Add research Adv
	Overview Project log References (3) Research referenced in this Add more references	
	Research referenced in this Add more references Issues of prosparity: Stochastic evaluation of data related to environ	project
	Research referenced in this Add more references Insure of prosperify: Stochastic evaluation of data related to environ economy and society	project
	Research referenced in this Add more references Issues of prosperity: Stochastic evaluation of data related to environ concerny and acciety Term Full test available - 2n 2022	project
	Research referenced in this Ad more references Issues of presperity: Stochastic evaluation of data related to environ concern and society Takener (reference available: -an 2022 C G. From Sargentin	project
	Research referenced in this Add more references Issues of prosperity: Stochastic evaluation of data related to environ concerny and acciety Term Full test available - 2n 2022	project
	Research referenced in this Ad more references Issues of presperity: Stochastic evaluation of data related to environ concern and society Takener (reference available: -an 2022 C G. From Sargentin	project



REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

ADDitively Manufactured OPTimized Structures by means of Machine Learning Work Package Number: 8

EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

Work Package Number: 8 Link between secondments, tasks and deliverables

• SECONDMENT FOR THE WP8

The progress on WP8, has been performed in the framework of the following secondments:

- secondment of Evangelia Frangedaki from National Technical University Of Athens -NTUA, at IDEA 75 (13/12/2021-1/8/2022).
- secondment of G.-Fivos Sargentis from National Technical University Of Athens NTUA, at IDEA 75 (13/12/2021-1/8/2022).

0

EUROPEAN RESEARCH EXECUTIVE AGENCY (REA)

REA.A - Marie Skłodowska-Curie Actions & Support to Experts A.3 - MSCA Staff Exchanges

ADDitively Manufactured OPTimized Structures by means of Machine Learning Work Package Number: 8

• CONCLUSIONS

- Implementation according to chart planning
- New knowledge through an multidisciplinary approach to additive manufacturing in the Webinar and collaboration in person.
- A professional knowledge base for all participants (researchers and employees from beneficiary members involved in this field). Presentations according to current theories and future possibilities for AM.
- knowledge sharing for Computational Mechanics and Additive Manufacturing through a essential collaboration between RISA, Idea75, Jordan University of Science & Technology and NTUA.
- Common research goals between secondees. Public presentation of research through published work and webinar.

EUROPEAN RESEARCH EXECUTIVE AGENCY (REA) REA.A - Marie Sklodowska-Curie Actions & Support to Experts

A.3 - MSCA Staff Exchanges

Work Package Number: 8 Future implementation

FUTURE SECONDMENT FOR THE WP8

Organization for a seminar on ADDitively Manufactured OPTimized Structures

Organization for an International Conference on ADDitively Manufactured OPTimized Structures for 2024

Theses: One to two Diploma Theses are expected to be carried